Y11 to Y12 Mathematics Summer Independent Learning

June to August

Please read the following instructions very carefully and ensure you label and collate all your work ready for checking in September.

For your first maths lesson please bring

- A large A4 folder with five subject dividers.
- These instructions with the tables filled in (print out/copy the tables onto A4 paper).
- Dated and titled work done on each of the topics listed in Task 1 \& 3.
- The two practice initial tests (Task 2), fully marked and reviewed.
- A list of questions you need to ask prior to doing your initial test.

Task 1: Preparation for A level Maths

1. You should spend approximately 1 hour on each topic
2. For each topic, work through video.
3. Complete worksheet using the technique and layout used in the video.
4. Make sure you title and date your work.
5. Mark and correct work.
6. Do improvement work as necessary.
7. Repeat for each topic.
8. Keep track by filling in the following table.
9. Collate your work for each topic together so it is easy to check in September. (See point 3!)

Topic	$\frac{\text { Video(s) }}{\text { (Tick) }}$	Worksheet (Tick)	Details of Improvement Work Completed
B1 Indices			
B2 Surds			
B3 Quadratics			
B4 Simultaneous Equations			
B5 Inequalities			
E1 Triangle Geometry			

1. Do Practice Initial Test 1 under exam conditions.
2. Mark and correct your test and identify any improvement work necessary.
3. Fill in the review sheet below.
4. Revisit relevant videos and worksheets.
5. Update review sheet with details of work completed.

Topic	Score	Improvement Work to Do	Tick
B1 Indices	11		
B2 Surds	10		
B3 Quadratics	49		
B4 Simultaneous Equations	11		
B5 Inequalities	11		
E1 Triangle Geometry	12		

6. Do Practice Initial Test 2 under exam conditions.
7. Mark and correct your test and identify any improvement work necessary.
8. Fill in the review sheet below.
9. Revisit relevant videos and worksheets.
10. Update review sheet with details of work completed.
11. Make a list of questions you need to ask prior to doing your initial test for real!

Topic	Score	Improvement Work to Do	Tick	Questions to ask...
B1 Indices	11			
B2 Surds	10			
B3 Quadratics	49			
B4 Simultaneous Equations	11			
B5 Inequalities	11			
E1 Triangle Geometry	12			
	Total	114		

Video hyperlinks

B1 Indices
https://youtu.be/1IThXgU08S0
https://youtu.be/v5bn4HZrmQs
https://youtu.be/W0h4rHj88ys
B2 Surds
https://youtu.be/jHelde32Yt|
B3 Quadratics
https://youtu.be/Pziws8ojnlk
https://youtu.be/sn joGVj15w
https://youtu.be/kk7p6hjn7hQ
https://youtu.be/tolqbX NXHo
B4 Simultaneous Equations
https://youtu.be/4SRtwS5unwE
B5 Inequalities
https://youtu.be/wDut-In 7Wg
E1 Triangle Geometry
https://youtu.be/uVI6TAbOvBg

Exam Questions (OCR/MEI C1 Questions)

1. Jan 05 Q 5

Find the value of the following.
(i) $\left(\frac{1}{3}\right)^{-2}$
(ii) $16^{\frac{1}{2}}$
2. June 05 Q6

Simplify the following.
(i) a^{0}
(ii) $a^{6} \div a^{-2}$
(iii) $\left(9 a^{6} b^{2}\right)^{-\frac{1}{2}}$
3. June 06 Q9

Simplify the following.
(i) $\frac{16^{\frac{1}{2}}}{81^{\frac{3}{4}}}$
(ii) $\frac{12\left(a^{3} b^{2} c\right)^{4}}{4 a^{2} c^{6}}$
[3]
4. Jan 07 Q6

Find the value of each of the following, giving each answer as an integer or fraction as appropriate.
(i) $25^{\frac{3}{2}}$
[2]
(ii) $\left(\frac{7}{3}\right)^{-2}$
[2]
5. June 07 Q5
(i) Find a, given that $a^{3}=64 x^{12} y^{3}$.
(ii) Find the value of $\left(\frac{1}{2}\right)^{-5}$.

Indices Exam Questions Solutions

1. $\operatorname{Van} 05 Q 5$
2. $\operatorname{Jan} 05 Q 6$
(i) $\left(\frac{1}{3}\right)^{-2}$
(ii) $16^{3 / 4}$
(i) $a^{0}=1$
(ii) $a^{6} \div a^{-2}=a^{8}$

$$
=\left(\frac{3}{1}\right)^{2}
$$

$=\left(16^{1 / 4}\right)^{3}$
(iii) $\left(9 a^{6} b^{2}\right)^{-1 / 2}=\frac{1}{3} a^{-3} b^{-1}$

$$
=9
$$

$$
=2^{3}
$$

$$
=8
$$

or $\frac{1}{3 a^{3} b}$
3. June of Q9
4. $\operatorname{Jan} 07 Q 6$
(i) $\frac{16^{1 / 2}}{81^{3 / 4}}$
(ii) $\frac{12\left(a^{3} b^{2} c\right)^{4}}{4 a^{2} c^{6}}$
(i)

$$
=\frac{4}{\left(81^{1 / 4}\right)^{3}}
$$

$$
=\frac{12 a^{12} b^{8} c^{4}}{4 a^{2} c^{6}}
$$

$$
=\frac{4}{3^{3}}
$$

$$
=3 a^{10} b^{8} c^{-2}
$$

$$
\text { or } \frac{3 a^{10} b^{8}}{c^{2}}
$$

$$
\text { (i) } \begin{aligned}
25^{3 / 2} & =\left(25^{1 / 2}\right)^{3} \\
& =5^{3} \\
& =125 \\
\text { (ii) }\left(\frac{7}{3}\right)^{-2} & =\left(\frac{3}{7}\right)^{2} \\
& =\frac{9}{49}
\end{aligned}
$$

5. June 0705
(i)

$$
\begin{array}{ll}
a^{3}=64 x^{12} y^{3} & \text { (ii) }\left(\frac{1}{2}\right)^{-5} \\
a=\left(64 x^{12} y^{3}\right)^{1 / 3} & =\left(\frac{2}{1}\right)^{5} \\
a=4 x^{4} y & =32
\end{array}
$$

Exam Questions (AQA Questions)

1. Jan 05 Q5
(a) Simplify $(\sqrt{12}+2)(\sqrt{12}-2)$.
(b) Express $\sqrt{12}$ in the form $m \sqrt{3}$, where m is an integer.
(c) Express $\frac{\sqrt{12}+2}{\sqrt{12}-2}$ in the form $a+b \sqrt{3}$, where a and b are integers.
2. June 05 Q5

Express each of the following in the form $m+n \sqrt{3}$, where m and n are integers:
(a) $(\sqrt{3}+1)^{2}$;
(b) $\frac{\sqrt{3}+1}{\sqrt{3}-1}$.
3. Jan 06 Q1
(a) Simplify $(\sqrt{5}+2)(\sqrt{5}-2)$.
(2 marks)
(b) Express $\sqrt{8}+\sqrt{18}$ in the form $n \sqrt{2}$, where n is an integer.
4. June 06 Q4
(a) Express $(4 \sqrt{5}-1)(\sqrt{5}+3)$ in the form $p+q \sqrt{5}$, where p and q are integers.
(3 marks)
(b) Show that $\frac{\sqrt{75}-\sqrt{27}}{\sqrt{3}}$ is an integer and find its value.
5. Jan 07 Q 3
(a) Express $\frac{\sqrt{5}+3}{\sqrt{5}-2}$ in the form $p \sqrt{5}+q$, where p and q are integers.
(b) (i) Express $\sqrt{45}$ in the form $n \sqrt{5}$, where n is an integer.
(ii) Solve the equation

$$
x \sqrt{20}=7 \sqrt{5}-\sqrt{45}
$$

giving your answer in its simplest form.
6. June $07 \mathrm{Q7}$
(a) Express $\frac{\sqrt{63}}{3}+\frac{14}{\sqrt{7}}$ in the form $n \sqrt{7}$, where n is an integer.
(b) Express $\frac{\sqrt{7}+1}{\sqrt{7}-2}$ in the form $p \sqrt{7}+q$, where p and q are integers.

Exam Questions Solutions - Surds

1. Jan 0505

$$
\text { (a) } \begin{aligned}
& (\sqrt{12}+2)(\sqrt{12}-2) \quad\left(m_{1}\right) \\
= & 12-2 \sqrt{12}+2 \sqrt{12}-4 \\
= & 8 \quad \text { (A1) }
\end{aligned}
$$

(b) $\sqrt{12}=\sqrt{4} \sqrt{3}$
(BI)

$$
\begin{align*}
& (c)(\sqrt{12}+2)(\sqrt{12}+2)\left(m_{1}\right) \\
& (\sqrt{12}-2)(\sqrt{12}+2) \\
= & \frac{12+2 \sqrt{12}+2 \sqrt{12}+4}{8}\left(A_{1}\right) \\
= & \frac{16+4 \sqrt{12}}{8} \\
= & \frac{16+8 \sqrt{3}}{8} \quad\left(A_{1}\right) \tag{1}\\
= & 2+\sqrt{3} \quad\left(A_{1}\right)
\end{align*}
$$

2. June 05 Q5
(a)

$$
\begin{align*}
& (\sqrt{3}+1)^{2} \\
= & (\sqrt{3}+1)(\sqrt{3}+1)(m 1) \\
= & 3+\sqrt{3}+\sqrt{3}+1 \tag{1}\\
= & 4+2 \sqrt{3} \quad \text { (Ai) } \tag{i}
\end{align*}
$$

$$
\text { (b) } \begin{aligned}
& \left(\frac{\sqrt{3}+1)(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}\right. \\
& =\frac{4+2 \sqrt{3}}{3+\sqrt{3}-\sqrt{3}-1} \\
& =\frac{4+2 \sqrt{3}}{2} \\
& =2+\sqrt{3} \quad \text { (A1) }
\end{aligned}
$$

(m)
3. Jan 06 Q1
(a)

$$
\begin{align*}
& (\sqrt{5}+2)(\sqrt{5}-2) \\
= & 5-2 \sqrt{5}+2 \sqrt{5}-4 \tag{1}\\
= & 1 \quad\left(A_{1}\right)
\end{align*}
$$

$$
\text { (b) } \begin{aligned}
& \sqrt{8}+\sqrt{18} \\
= & \sqrt{4} \sqrt{2}+\sqrt{9} \sqrt{2} \\
= & 2 \sqrt{2}+3 \sqrt{2} \\
= & 5 \sqrt{2}
\end{aligned}
$$

4. June 06 Q4
(a)

$$
\begin{aligned}
& (4 \sqrt{5}-1)(\sqrt{5}+3) \\
= & 20+12 \sqrt{5}-\sqrt{5}-3\left(\mathrm{~m}_{1}\right)\left(A_{1}\right) \\
= & \frac{\sqrt{75}-\sqrt{27}}{\sqrt{3}} \\
= & \frac{5 \sqrt{3}-3 \sqrt{3}}{\sqrt{3}} \\
= & \frac{2 \sqrt{3}}{\sqrt{3}} \\
= & \text { (M1)) } \\
= & \text { (A1) }
\end{aligned}
$$

5. Jan 07 Q3
(a)

$$
\begin{align*}
& \frac{(\sqrt{5}+3)(\sqrt{5}+2)}{(\sqrt{5}-2)(\sqrt{5}+2)} \tag{1}\\
& =\frac{5+2 \sqrt{5}+3 \sqrt{5}+6}{5-4}\left(A_{1}\right) \\
& \text { (ii) } x \sqrt{20}=7 \sqrt{5}-\sqrt{45} \\
& \begin{array}{l}
2 x \sqrt{5}=7 \sqrt{5}-3 \sqrt{5} \\
2 x \sqrt{5}=4 \sqrt{5}
\end{array} \tag{1}\\
& =11+5 \sqrt{5} \\
& \text { (A1) } \\
& 2 x=4 \\
& x=2 \\
& \text { (A) }
\end{align*}
$$

6. June 07 Q7
(a)

$$
\begin{array}{rlr}
& \frac{\sqrt{63}}{3}+\frac{14}{\sqrt{7}} & \text { (b) } \frac{(\sqrt{7}+1)(\sqrt{7}+2)}{(\sqrt{7}-2)\left(\frac{\sqrt{7}+2}{}\right)} \\
= & \frac{3 \sqrt{7}}{3}+\frac{14}{\sqrt{7}} \cdot \frac{\sqrt{7}}{\sqrt{7}}\left(m_{1}\right) & = \\
= & \frac{7+2 \sqrt{7}+\sqrt{7}+2}{7-4} \\
= & \frac{3 \sqrt{7}}{3}+\frac{14 \sqrt{7}}{7} & = \\
= & \frac{9+3 \sqrt{7}}{3} \\
= & 3 \sqrt{7}+2 \sqrt{7} & \text { (A1) }
\end{array}
$$

Exam Questions (AQA C1 Questions)

1. Jan 2011 Q7

(a) (i) Express $4-10 x-x^{2}$ in the form $p-(x+q)^{2}$.
(ii) Hence write down the equation of the line of symmetry of the curve with equation
$y=4-10 x-x^{2}$.
2. June 11 Q4
(a) Express $x^{2}+5 x+7$ in the form $(x+p)^{2}+q$, where p and q are rational numbers.
(b) A curve has equation $y=x^{2}+5 x+7$.
(i) Find the coordinates of the vertex of the curve.
(ii) State the equation of the line of symmetry of the curve.
(iii) Sketch the curve, stating the value of the intercept on the y-axis.
(c) Describe the geometrical transformation that maps the graph of $y=x^{2}$ onto the graph of $y=x^{2}+5 x+7$.
3. Jan 12 Q2
(a) Factorise $x^{2}-4 x-12$.
(b) Sketch the graph with equation $y=x^{2}-4 x-12$, stating the values where the curve crosses the coordinate axes.
(c) (i) Express $x^{2}-4 x-12$ in the form $(x-p)^{2}-q$, where p and q are positive integers.
(ii) Hence find the minimum value of $x^{2}-4 x-12$.
(d) The curve with equation $y=x^{2}-4 x-12$ is translated by the vector $\left[\begin{array}{r}-3 \\ 2\end{array}\right]$. Find an equation of the new curve. You need not simplify your answer. (2 marks)
4. June 12 Q5
(a) (i) Express $x^{2}-3 x+5$ in the form $(x-p)^{2}+q$.
(ii) Hence write down the equation of the line of symmetry of the curve with equation $y=x^{2}-3 x+5$.
5. Jan 13 Q4
(a) (i) Express $x^{2}-6 x+11$ in the form $(x-p)^{2}+q$.
(ii) Use the result from part (a)(i) to show that the equation $x^{2}-6 x+11=0$ has no real solutions.
(b) A curve has equation $y=x^{2}-6 x+11$.
(i) Find the coordinates of the vertex of the curve.
(ii) Sketch the curve, indicating the value of y where the curve crosses the y-axis.
(3 marks)
(iii) Describe the geometrical transformation that maps the curve with equation
$y=x^{2}-6 x+11$ onto the curve with equation $y=x^{2}$.
(3 marks)
6. June 13 Q5
(a) (i) Express $2 x^{2}+6 x+5$ in the form $2(x+p)^{2}+q$, where p and q are rational numbers.
(ii) Hence write down the minimum value of $2 x^{2}+6 x+5$.

Quadratics Exam Questions Solutions

1. Jan 201107
(a)(i) $4-10 x-x^{2}$

$$
\begin{aligned}
& \equiv-\left(x^{2}+10 x-4\right) \\
& \equiv-\left((x+5)^{2}-25-4\right)\left(\mathrm{m}_{1}\right) \\
& \equiv-\left((x+5)^{2}-29\right) \\
& \equiv 29-(x+5)^{2} \quad\left(A_{1}\right)
\end{aligned}
$$

(ii) line of symmetry $x=-5$
2. June II Q4
(a)

$$
\begin{align*}
& x^{2}+5 x+7 \equiv \tag{1}\\
\equiv & \left.(x+5 / 2)^{2}-\frac{25}{4}+\frac{28}{4}\left(B_{1}\right)(m)\right) \tag{1}\\
\equiv & \left(x+\frac{5}{2}\right)^{2}+\frac{3}{4}
\end{align*}
$$

$$
\text { (b) (i) when } x=-\frac{5}{2} \quad y=\frac{3}{4}
$$

$$
\therefore \text { vertex at }(-5 / 2,3 / 4)
$$

(ii) line of symmerry $x=\frac{-5}{2}$
(iii)

(c) Translation $\underset{(E 1)}{\binom{-5 / 2}{3 / 4}\left(m_{1}\right)(A 1)}$
3. $\operatorname{Jan} 12 Q 2$
(a)

$$
\begin{align*}
& x^{2}-4 x-12 \\
\equiv & (x-6)(x+2) \tag{BI}
\end{align*}
$$

$$
\begin{align*}
& \text { (c)(i) } x^{2}-4 x-12 \\
& \equiv(x-2)^{2}-4-12 \quad \text { (mi) } \\
& \equiv(x-2)^{2}-16 \tag{1}
\end{align*}
$$

(b)

(ii) \min value is -16 (Biri)
(d) $y=(x+3)^{2}-4(x+3)-12+2$
$y=(x+3)^{2}-4(x+3)-10$ (m1)
(A1)
ie $y=(x+1)^{2}-14$
(B1)
(A1) mintright of yaxis
4. June 1205
(a)(i)

$$
\begin{aligned}
& x^{2}-3 x+5 \\
\equiv & (x-3 / 2)^{2}-\frac{9}{4}+\frac{20}{4} \\
& \left(m_{1}\right) \\
\equiv & (x-3 / 2)^{2}+\frac{11}{4} \quad \text { (A1) }
\end{aligned}
$$

(ii) line of symmerry is $x=3 / 2$ (BiFT)
5. $\operatorname{Jan} 13 \quad Q 4$
(a)(i)

$$
\begin{align*}
& x^{2}-6 x+11 \\
\equiv & (x-3)^{2}-9+11 \\
\equiv & (x-3)^{2}+2
\end{align*}
$$

(ii)

$$
\begin{aligned}
& (x-3)^{2}+2=0 \\
& (x-3)^{2}=-2
\end{aligned}
$$

can't take square root of negatwe number and get real solutions: noreal solutions
(b) (i) $(3,2)$
(b) (ii)

(iii) Translation $\binom{-3}{-2}$ (mi)

Gone backwords!
6 June 1305
(a)(i)

$$
\begin{array}{rlrl}
& 2 x^{2}+6 x+5 & \text { or } & 2 x^{2}+6 x+5 \\
\equiv & 2\left[x^{2}+3 x\right]+5 & & \equiv 2\left[x^{2}+3 x+5 / 2\right] \\
\equiv & 2\left[(x+3 / 2)^{2}-9 / 4\right]+5 & & \equiv 2\left[(x+3 / 2)^{2}-9 / 4+10 / 4\right] \\
\equiv & 2(x+3 / 2)^{2}-9 / 2+\frac{10}{2} & \equiv & 2\left[(x+3 / 2)^{2}+1 / 4\right] \\
\equiv & 2(x+3 / 2)^{2}+\frac{1}{2}(\text { (1) }) & \equiv 2(x+3 / 2)^{2}+1 / 2
\end{array}
$$

(ii) Min vawe is $y=1 / 2$ (BIFT)

	Solve the simultaneous equations $\begin{gathered} y-3 x+2=0 \\ y^{2}-x-6 x^{2}=0 \end{gathered}$ (Total 7 marks)
2	The curve C has equation $y=x^{2}-4$ and the straight line l has equation $y+3 x=0$. (a) In the space below, sketch C and l on the same axes. (b) Write down the coordinates of the points at which C meets the coordinate axes. (c) Using algebra, find the coordinates of the points at which l intersects C. (Total 9 marks)
3	Jan 011 Q7 (b) The curve C has equation $y=4-10 x-x^{2}$ and the line L has equation $y=k(4 x-13)$, where k is a constant. (i) Show that the x-coordinates of any points of intersection of the curve C with the line L satisfy the equation $x^{2}+2(2 k+5) x-(13 k+4)=0 \quad \text { (l mark) }$
4.	Jan 13 Q8 A curve has equation $y=2 x^{2}-x-1$ and a line has equation $y=k(2 x-3)$, where k is a constant. (a) Show that the x-coordinate of any point of intersection of the curve and the line satisfies the equation $2 x^{2}-(2 k+1) x+3 k-1=0$ (1 mark)

Simultaneous Equations Exam Questions
1)

$$
\begin{aligned}
& y=3 x-2 \\
& (3 x-2)^{2}-x-6 x^{2}=0 \\
& 9 x^{2}-12 x+4-x-6 x^{2}=0 \\
& 3 x^{2}-13 x+4=0 \\
& (3 x-1)(x-4)=0 \\
& x=-1 / 3 \quad x=4 \\
& y=-1 \quad y=10
\end{aligned}
$$

2)

b) $(2,0),(-2,0)$
c) $y=-3 x$

$$
\begin{aligned}
& -3 x=x^{2}-4 \\
& x^{2}+3 x-4=0 \\
& (x-1)(x+4)=0 \\
& x=1 \\
& y=-3 \text { OR } \quad x=-4 \\
& y=12
\end{aligned}
$$

intersection are $(1,-3),(-4,12)$
$\operatorname{Jan} 1107$

$$
\begin{aligned}
& y=4-10 x-x^{2} \quad y=k(4 x-13) \\
& k(4 x-13)=4-10 x-x^{2} \\
& x^{2}+10 x+4 k x-13 k-4=0 \\
& x^{2}+2(2 k+5) x-(13 k+4)=0 \\
& \operatorname{Jan} 13 Q 8 \\
& y=2 x^{2}-x-1 \quad y=k(2 x-3) \\
& \quad 2 x^{2}-x-1=k(2 x-3) \\
& 2 x^{2}-x-1=2 k x-3 k \\
& 2 x^{2}-2 k x-x+3 k-1=0 \\
& 2 x^{2}-(2 k+1) x+3 k-1=0
\end{aligned}
$$

Exam Questions (AQA C1 Questions)

1. Jan 11 Q7
(iii) Solve the inequality $4 k^{2}+33 k+29>0$.
2. June 11 Q7

Solve each of the following inequalities:
(a) $\quad 2(4-3 x)>5-4(x+2)$; (2 marks)
(b) $\quad 2 x^{2}+5 x \geqslant 12$. (4 marks)
3. Jan 12 Q6

A rectangular garden is to have width x metres and length $(x+4)$ metres.
(a) The perimeter of the garden needs to be greater than 30 metres.

Show that $2 x>11$.
(b) The area of the garden needs to be less than 96 square metres.

Show that $x^{2}+4 x-96<0$. (1 mark)
(c) Solve the inequality $x^{2}+4 x-96<0$. (4 marks)
(d) Hence determine the possible values of the width of the garden.
(1 mark)
4. June 12 Q7a
(ii) Solve the inequality $3 x^{2}-10 x+8<0$.

Inequalities Exam Questions Solutons

1. Jan 11 Q (ii)

$$
\begin{align*}
& 4 R^{2}+33 R+29>0 \\
& (4 R+29)(R+1)>0 \tag{mi}
\end{align*}
$$

$C V$ at $k=-\frac{29}{} \quad k=-1$
 (mi)

$$
\begin{equation*}
R<-\frac{29}{4} \text { or } R>-1 \tag{A}
\end{equation*}
$$

2. June 11 Q7
(a)

$$
\begin{aligned}
2(4-3 x) & >5-4(x+2) \\
8-6 x & >5-4 x-8 \quad(m i) \\
-2 x & >-11 \quad \text { (} x-1 \text { everse nequality sign) } \\
2 x & <11 \\
x & <\frac{11}{2} \quad\left(A_{1}\right) \quad
\end{aligned}
$$

(b)

$$
\begin{array}{r}
2 x^{2}+5 x \geqslant 12 \\
2 x^{2}+5 x-12 \geqslant 0 \\
(2 x-3)(x+4) \geqslant 0 \tag{m}
\end{array}
$$

cvs at $x=\frac{3}{2} \quad x=-4$ (A1)

$$
\begin{equation*}
x \leqslant-4 \text { or } x \geqslant 3 / 2 \tag{A}
\end{equation*}
$$

$3 \operatorname{Jan} 12 Q_{6}$

(a)

$$
\begin{align*}
x+x+x+4+x+4 & >30 \\
4 x+8 & >30 \\
4 x & >22 \tag{6i}\\
2 x & >11 \\
(x & >1 / 2)
\end{align*}
$$

(b)

$$
\begin{align*}
x(x+4) & <96 \\
x^{2}+4 x & <96 \\
x^{2}+4 x-96 & <0 \tag{bi}\\
(x+12)(x-8) & <0 \tag{m1}
\end{align*}
$$

crs $x=-12 \quad x=8$
(A)

$$
-12<x<8
$$

(A)
(c) $\frac{11}{2}<x<8$
4. June 12 Q7(a)

$$
\begin{align*}
& 3 x^{2}-10 x+8<0 \\
& (3 x-4)(x-2)<0 \tag{m}
\end{align*}
$$

cus $x=\frac{4}{3} \quad x=2$

$$
\frac{4}{3}<x<2
$$

(A1)

1. June 2006 Q2

The diagram shows a triangle $A B C$.

The lengths of $A C$ and $B C$ are 4.8 cm and 12 cm respectively.
The size of the angle $B A C$ is 100°.
(a) Show that angle $A B C=23.2^{\circ}$, correct to the nearest 0.1°.
(b) Calculate the area of triangle $A B C$, giving your answer in cm^{2} to three significant figures.
2. Jan 2007 Q 4 (adapted)

The triangle $A B C$, shown in the diagram, is such that $B C=6 \mathrm{~cm}, A C=5 \mathrm{~cm}$ and $A B=4 \mathrm{~cm}$. The angle $B A C$ is θ.

(a) Use the cosine rule to show that $\cos \theta=\frac{1}{8}$.
(c) Hence find the area of the triangle $A B C$.
3. June 2008 Q 4

The diagram shows a triangle $A B C$.

The size of angle $B A C$ is 65°, and the lengths of $A B$ and $A C$ are 7.6 m and 8.3 m respectively.
(a) Show that the length of $B C$ is 8.56 m , correct to three significant figures. (3 marks)
(b) Calculate the area of triangle $A B C$, giving your answer in m^{2} to three significant figures.
(2 marks)
(c) The perpendicular from A to $B C$ meets $B C$ at the point D.

Calculate the length of $A D$, giving your answer to the nearest 0.1 m .
(3 marks)
4. Jan 2011 Q3

The triangle $A B C$, shown in the diagram, is such that $A B=5 \mathrm{~cm}, A C=8 \mathrm{~cm}$, $B C=10 \mathrm{~cm}$ and angle $B A C=\theta$.

(a) Show that $\theta=97.9^{\circ}$, correct to the nearest 0.1°.
(b) (i) Calculate the area of triangle $A B C$, giving your answer, in cm^{2}, to three significant figures.
(ii) The line through A, perpendicular to $B C$, meets $B C$ at the point D. Calculate the length of $A D$, giving your answer, in cm , to three significant figures.

The diagram shows a triangle $A B C$.

The lengths of $A C$ and $B C$ are 5 cm and 6 cm respectively.
The area of triangle $A B C$ is $12.5 \mathrm{~cm}^{2}$, and angle $A C B$ is obtuse.
(a) Find the size of angle $A C B$, giving your answer to the nearest 0.1°.
(b) Find the length of $A B$, giving your answer to two significant figures.

Triangle Geometry Exam Questions

1. June 2006 Q2

A
(a) $\frac{\sin \hat{A B C}}{48}=\frac{\sin 100}{12}$
$\sin A \hat{B C}=0.48 \operatorname{in} 100 \quad(\mathrm{mi})$
$\hat{A B C}=\sin ^{-1}(64 \sin 100)$
$\hat{A B C}=23.19882755$
$\hat{A B C}=23.2$ carect to (A1) nearest 0.1°
(b) angle $\hat{A C B}=180-100-23.2$

$$
=56.8^{\circ} \quad(\mathrm{mI})
$$

area of $\Delta=\frac{1}{2} \times 4.8 \times 12 \times \sin 56.8\left(\mathrm{mi}_{1}\right)$

$$
\begin{equation*}
=24.1 \mathrm{~cm}^{2} \text { to 3.s.f. } \tag{1}
\end{equation*}
$$

2.

(a) Using cosine rule
(mi)

$$
6^{2}=4^{2}+5^{2}-2(4)(5) \cos \theta
$$

$$
36=41-40 \cos \theta
$$

$$
40 \cos \theta=5
$$

$$
\cos \theta=\frac{5}{40}
$$

$$
\cos \theta=\frac{1}{8}
$$

$$
\begin{aligned}
& \text { (c) } \theta=\cos ^{-1}\left(\frac{1}{8}\right) \\
& \theta=82.8^{\circ} \quad \text { (viI) } \\
& A=\frac{1}{2} \times 4 \times 5 \times \sin 82.8^{\circ} \\
& \text { Areo }= 9.92 \mathrm{~cm}^{2} \text { 10 3.s.F. (AI) }
\end{aligned}
$$

(AI)
3.

(a) Using cosine rule

$$
\begin{align*}
& B C^{2}=7.6^{2}+8.3^{2}-2(7.6)(8.3) \cos 65^{\circ} \quad\left(\mathrm{m}_{1}\right) \\
& B C^{2}=73.33248 \ldots \\
& B C=8.5634 \ldots \\
& B C=8.56 \mathrm{~m} \text { to 3.s.f. } \quad \text { (A1) } \tag{1}
\end{align*}
$$

(b)

$$
\begin{align*}
A & =\frac{1}{2} \times 7.6 \times 8.3 \sin 65 \\
& =28.6 \mathrm{~m}^{2} 103 . \text { s.f. } \tag{A1}
\end{align*}
$$

(c)

$$
\begin{equation*}
28.6=\frac{1}{2} \times 8.56 \times A D \tag{mi}
\end{equation*}
$$

$A D=6.7 \mathrm{~m}$ to neorest 0.1 m (A1)
4. Jan 2011 Qu

(a) Using cosine rule
(mi)

$$
\text { (b) (i) Area }=\frac{1}{2} \times 5 \times 8 \times \sin 97.9^{\circ}
$$

$$
\begin{array}{rlrl}
10^{2} & =5^{2}+8^{2}-2(5)(8) \cos \theta & & =19.8 \mathrm{~cm}^{2} 103 . \text { s.f. (Al) } \\
100 & =89-80 \cos \theta & \text { (mi) } & \text { (ii) } 19.8 \\
80 \cos \theta & =-11 & \times 10 \times A D(\mathrm{mi})(\mathrm{mil}) \\
\cos \theta & =-\frac{11}{2} & & A D \\
& =3.96 \mathrm{~cm} 10 \text { 3.s.f. (Al) } \\
\theta & =97.9032 \ldots & &
\end{array}
$$

5. Jan 201303

(a)
(AI)
(b) Using cosine rule

$$
\begin{aligned}
& A B^{2}=5^{2}+6^{2}-2(5)(6) \cos 123.6^{\circ}(\mathrm{m})(\mathrm{NI}) \\
& A B^{2}=94.203 \ldots \\
& A B=9.7 \mathrm{~cm} \text { to 2.s.f. } \quad\left(A_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
12 \cdot 5=\frac{1}{2} \times 5 \times 6 \\
\frac{12 \cdot 5}{15}=\sin C
\end{array} \\
& C=56.4^{\circ} \\
& \text { but } \hat{A C B} \text { is obtuse } \\
& \therefore \hat{A C B}=180-66.4 \\
& =123.6^{\circ}
\end{aligned}
$$

TASK 2

Year 12 Initial Test for Mathematics

Write out the solutions to each of the following questions.
Show full working, without the use of a calculator.

Practice 1 (No Calculator)

B1 Indices

1.	Evaluate $\left(\frac{8}{125}\right)^{-2 / 3}$	2.	Express in the form x^{k} $\frac{\sqrt{x} \times \sqrt[3]{x}}{x^{2}}$	3.	Solve $9^{x-2}=27$	4.	Solve $16^{x}=4^{1-x}$

B2 Surds

1.	Simplify $\sqrt{72}$	2.	Expand and simplify $(2 \sqrt{7}-5 \sqrt{3})(3 \sqrt{7}+4 \sqrt{3})$	3.	Rationalise the denominator $\frac{11}{2 \sqrt{5}}$	4.	Rationalise the denominator $\frac{8-3 \sqrt{5}}{2+\sqrt{5}}$

B3 Quadratics

1. Solve the following quadratic equations by factorising and use your solutions to sketch the related quadratic graph, labelling all intersections with the coordinate axis

(a) (i) $x^{2}+3 x-28=0$	(b) (i) $x^{2}-6 x+9=0$	(c) (i) $2 x^{2}-21 x+27=0$
(a) (ii) Sketch $y=x^{2}+3 x-28$	(b) (ii) Sketch $y=x^{2}-6 x+9$	(c) (ii) Sketch $y=2 x^{2}-21 x+27$

2. Solve the following quadratic equations by completing the square and use your solutions to sketch the related quadratic graph, labelling all intersections with the coordinate axis and turning point.

(a) (i) $x^{2}+4 x-7=0$	(b) (i) $11+8 x-x^{2}=0$	(c) (i) $3 x^{2}-12 x+2=0$
(ii) Write $y=x^{2}+4 x-7$ in the form $y=a(x+b)^{2}+c$	(ii) Write $y=11+8 x-x^{2}$ in the form $y=a(x+b)^{2}+c$	(ii) Write $y=3 x^{2}-12 x+2$ in the form $y=a(x+b)^{2}+c$
(iii) Sketch $y=x^{2}+4 x-7$	(iii) Sketch $y=11+8 x-x^{2}$	(iii) Sketch $y=3 x^{2}-12 x+2$

3. Evaluate the equation of the following quadratics, giving your answer in the form $y=a x^{2}+b x+c$
(a)

(b)

(c)

1.	Solve	$\begin{gathered} 3 x+3 y=-4 \\ 5 x-2 y=5 \end{gathered}$	2.	Solve	$\begin{aligned} & y=x-6 \\ & \frac{1}{2} x-y=4 \end{aligned}$	3.	Solve	$\begin{gathered} 3 x^{2}-x-y^{2}=0 \\ x+y=1 \end{gathered}$

B5 Inequalities

Find the set of values for which...
1.
$3(1-2 t) \leq t-4$
2.
$2 x^{2}-9 x+4 \leq 0$
3.
$2 y+3<3 y(y-2)$

E1 Triangle Geometry (Calculator)

1. Calculate the length AB

Practice 1
B1 Indices

1. $\left(\frac{8}{125}\right)^{-2 / 3}$

$$
=\left(\frac{125}{8}\right)^{2 / 3}
$$

$$
=\left(\frac{5}{2}\right)^{2}
$$

$$
=\frac{25}{4}
$$

$$
\text { 2. } \begin{aligned}
& \frac{\sqrt{x} \times \sqrt[3]{x}}{x^{2}} \\
&= \frac{x^{1 / 2} \times x^{1 / 3}}{x^{2}} \\
&= \frac{x}{}_{5 / 6}^{x^{2}} \\
& \text { A| } \\
&=x^{-7 / 6} \mathrm{Al}
\end{aligned}
$$

3. $9^{x-2}=27$

$$
\left(3^{2}\right)^{x-2}=3^{3} \mathrm{mi}
$$

$$
3^{2 x-4}=3^{3}
$$

$$
2 x-4=3 \quad \mathrm{MI}
$$

$$
2 x=7
$$

$$
x=7 / 2 \quad \text { Al }
$$

$$
\text { 4. } \begin{aligned}
16^{x} & =4^{1-x} \\
\left(4^{2}\right)^{x} & =4^{1-x} \\
4^{2 x} & =4^{1-x} \\
2 x & =1-x \\
3 x & =1 \Rightarrow x=1 / 3
\end{aligned}
$$

62 Surds

1. $\sqrt{72}$

$$
=\sqrt{36 \times 2}
$$

$$
=6 \sqrt{2} \quad \mathrm{Al}
$$

$$
\text { 2. } \begin{aligned}
(2 \sqrt{7} & -5 \sqrt{3})(3 \sqrt{7}+4 \sqrt{3}) \\
42 & +8 \sqrt{2}-15 \sqrt{21}-60 \quad \mathrm{mi} \mathrm{Al} \\
& -7 \sqrt{21}-18
\end{aligned}
$$

3. $\frac{11}{2 \sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} m^{\prime}$

$$
\text { 4. } \begin{aligned}
& \quad \frac{8-3 \sqrt{5}}{2+\sqrt{5}} \frac{(2-\sqrt{5})}{(2-\sqrt{5})} M 1 \\
&= \frac{16-8 \sqrt{5}-6 \sqrt{5}+15}{4-5} \mathrm{Al} \\
&=\frac{31-14 \sqrt{5}}{-1}=14 \sqrt{5}-31 \mathrm{Al}
\end{aligned}
$$

B3 Quadratics

1. (a) (i)

$$
\begin{aligned}
& x^{2}+3 x-28=0 \\
& (x+7)(x-4)=0 \mathrm{MI}_{1} \\
& x=-7 \text { or } x=4 \mathrm{Al}_{1}
\end{aligned}
$$

(ii)

(b) (i)

$$
\begin{aligned}
& x^{2}-6 x+9=0 \\
& (x-3)^{2}=0 \\
& \text { AI } x=3 \text { (repeated) }
\end{aligned}
$$

$$
\text { (ii) } y=x^{2}-6 x+9
$$

(c) (i)

$$
\begin{aligned}
& 2 x^{2}-21 x+27=0 \\
& (2 x-3)(x-9)=0 \mathrm{ml} \\
& x=3 / 2 \quad x=9 \quad \text { Al }
\end{aligned}
$$

$$
\text { (ii) } y=2 x^{2}-21 x+27
$$

BI shape, location related to axes
Al intersections x-axis
A1 intersections y-axis
2. (a) (i)

$$
\begin{aligned}
& x^{2}+4 x-7=0 \\
& (x+2)^{2}-4-7=0 \mathrm{MI}_{1} \\
& (x+2)^{2}=11 \\
& x+2= \pm \sqrt{11} \\
& x=-2 \pm \sqrt{11} \mathrm{Al}
\end{aligned}
$$

Graphs
Bi shape
AI Vertex
A) intersections x-axis
A) intersections y-ax is
(b) (i)

$$
\begin{gathered}
11+8 x-x^{2}=0 \\
-\left(x^{2}-8 x-11\right)=0 \\
-\left[(x-4)^{2}-16-11\right]=0 \mathrm{ml} \\
-(x-4)^{2}+27=0 \\
(x-4)^{2}=27 \\
x-4= \pm 3 \sqrt{3} \\
x=4 \pm 3 \sqrt{3} \mathrm{Al}
\end{gathered}
$$

(c)

$$
\begin{aligned}
& \text { (i) } \begin{aligned}
3 x^{2}-12 x+2 & =0 \\
3\left[x^{2}-4 x+\frac{2}{3}\right] & =0 \\
3\left[(x-2)^{2}-4+\frac{2}{3}\right] & =0 \\
3\left[(x-2)^{2}-\frac{10}{3}\right] & =0 \\
3(x-2)^{2}-10 & =0 \\
(x-2)^{2} & =\frac{10}{3} \\
x-2 & = \pm \sqrt{\frac{10}{3}} \\
x & =2 \pm \sqrt{\frac{10}{2}} \mathrm{Al}
\end{aligned}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& y=x^{2}+4 x-7 \\
& y=(x+2)^{2}-1181
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& y=11+8 x-x^{2} \\
& y=27-(x-4)^{2}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& y=3 x^{2}-12 x+2 \\
& y=3(x-2)^{2}-10
\end{aligned}
$$

$(2,-10)$
3. (a)

$$
\begin{aligned}
& y=k(x+3)(x-5) \quad \mathrm{MI} \\
& -15=k(3)(-5) \Rightarrow k=1 \\
& y=(x+3)(x-5) \\
& y=x^{2}-2 x-15 \text { AI }
\end{aligned}
$$

(b)

$$
\begin{aligned}
& y=k(x-3)^{2} \quad M 1 \\
& 18=k(-3)^{2} \Rightarrow k=2 A 1 \\
& y=2(x-3)^{2} \\
& y=2\left(x^{2}-6 x+9\right) \\
& y=2 x^{2}-12 x+18 \text { Al }
\end{aligned}
$$

(c)

$$
\begin{aligned}
y & =k(x+1)^{2}-4 \\
-1 & =k(1)^{2}-4 \\
& \Rightarrow k=3 \\
y & =3(x+-1) \\
y & =3\left(x^{2}+2 x+1\right)-4 \\
y & =3 x^{2}+6 x-1 \text { A। }
\end{aligned}
$$

B4 Simultaneous Equations

$$
\begin{aligned}
& \text { 1. } 3 x+3 y=-4 \quad 6 x+6 y=-8 \\
& 5 x-2 y=5 \quad 15 x-6 y=15 \text { add } \quad \mathrm{ml} \\
& x=1 / 3 \text { Al } 3(1 / 3)+3 y=-4 \\
& 3 y=-5 \\
& x=1 / 3, y=-5 / 3 \quad \text { AI }
\end{aligned}
$$

2.

$$
\begin{aligned}
& y=x-6 \\
& \frac{1}{2} x-y=4 \\
& \frac{1}{2} x-(x-6)=4 \quad \text { MI } \\
& \frac{1}{2} x-x+6=4 \\
&-\frac{1}{2} x=-2 \\
& x=4 \quad \text { Al } \quad y=4-6 \\
& x=4, y=-2 \quad \text { Al }
\end{aligned}
$$

$$
\begin{align*}
& \text { 3. } 3 x^{2}-x-y^{2}=0 \quad x+y=1 \\
& 3 x^{2}-x-(1-x)^{2}=0 \quad \text { MI } \quad y=1-x \\
& 3 x^{2}-x-\left(1-2 x+x^{2}\right)=0 \\
& 3 x^{2}-x-1+2 x-x^{2}=0 \\
& 2 x^{2}+x-1=0 \quad \text { Al } \\
& (2 x-1)(x+1)=0 \\
& x=1 / 2 \quad x=-1 \quad \text { Al } \\
& y=1-1 / 2 \quad y=1--1 \\
& x=1 / 2 y=1 / 2 \text { Al } \quad x=-1, y=2 \text { AI }
\end{align*}
$$

B5 Inequalities

1. $3(1-2 t) \leq t-4$
2. $2 x^{2}-9 x+4 \leqslant 0$

$$
\begin{aligned}
3-6 t & \leqslant t-4 \\
7 & \leqslant 7 t
\end{aligned}
$$

$$
(2 x-1)(x-4) \leqslant 0 \mathrm{ml}
$$

CVs $x=1 / 2 \quad x=4 \mathrm{Al}$

$$
\frac{1}{2} \leq x \leq 4 \mathrm{Al}
$$

3.

$$
\begin{aligned}
& 2 y+3<3 y(y-2) \\
& 2 y+3<3 y^{2}-6 y
\end{aligned}
$$

$$
0<3 y^{2}-8 y-361
$$

$$
3 y^{2}-8 y-3>0
$$

$$
(3 y+1)(y-3)>0 \quad \mathrm{ml}
$$

CVs $y=-1 / 3 \quad y=3 \quad \mathrm{Al}$
 $y<-1 / 3$ or $y>3 \mathrm{Al}$

E1 Triongle Geometry
1.

2.

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2}-2 a b \cos C \\
& c^{2}=17^{2}+23^{2}-2(17)(23) \cos 72^{\circ} \\
& c^{2}=576.35 \quad \mathrm{MI} \\
& A B=24.0 \mathrm{~cm} \quad \text { Al }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\sin \theta}{6.2}=\frac{\sin 53}{5.7} \mathrm{MI} \\
& \theta=\sin ^{-1}\left(\frac{6.2 \sin 53}{5.7}\right) \\
& \theta=60.3^{\circ} \quad \mathrm{Al}
\end{aligned}
$$

3.

$A B$

$$
\begin{gathered}
c^{2}=5.8^{2}+11^{2}-2(5.8)(11) \cos 31 \\
c^{2}=45.27 \quad \mathrm{MI}
\end{gathered}
$$

$$
A B=6.7 \mathrm{~m} \quad \mathrm{Al}
$$

θ

$$
\begin{aligned}
\text { mi } \cos \theta & =\frac{5.8^{2}+6.7^{2}-11^{2}}{2(5.8)(6.7)} \\
\text { A1 } \theta & =\cos ^{-1}(-0.546) \\
\theta & =123^{\circ}
\end{aligned}
$$

4.

$$
\begin{aligned}
\frac{\sin B}{10.7} & =\frac{\sin 72^{\circ}}{12.1} \mathrm{ml} \\
B & =\sin ^{-1}\left(\frac{10.7 \sin 72}{12.1}\right) \\
O & =57^{\circ} \quad A 1
\end{aligned}
$$

$$
\begin{aligned}
A & =\frac{1}{2} a b \operatorname{Sin} C \\
& =\frac{1}{2}(10.7)(12.1) \operatorname{Sin} 51^{\circ} \\
& =50.3 \mathrm{~cm}^{2} \mathrm{Al}
\end{aligned}
$$

12

Write out the solutions to each of the following questions.
Show full working, without the use of a calculator.

Practice 2 (No Calculator)

B1 Indices

1.	Evaluate $\left(3 \frac{3}{8}\right)^{-1 / 3}$	2.	Express in the form x^{k}	3.	Solve	4.	Solve
		$\frac{\sqrt{x} \times \sqrt[5]{x}}{x^{2}}$	$3^{3 x-2}=\sqrt[3]{9}$	$\left(\frac{1}{2}\right)^{1-x}=\left(\frac{1}{8}\right)^{2 x}$			

B2 Surds

1.	Simplify $\sqrt{80}$	2.	Expand and simplify $(7-3 \sqrt{5})(3 \sqrt{5}-2)$

3. Rationalise the denominator $\frac{7}{5 \sqrt{3}}$
4. Rationalise the denominator

$$
\frac{3+5 \sqrt{11}}{7-\sqrt{11}}
$$

B3 Quadratics

1. Solve the following quadratic equations by factorising and use your solutions to sketch the related quadratic graph, labelling all intersections with the coordinate axis.

(a) (i) $x^{2}-13 x+40=0$	(b) (i) $x^{2}+5 x=0$	(c) (i) $6 x^{2}+5 x-4=0$
(a) (ii) Sketch $y=x^{2}-13 x+40$	(b) (ii) Sketch $y=x^{2}+5 x$	(c) (ii) Sketch $y=6 x^{2}+5 x-4$

2. Solve the following quadratic equations by completing the square and use your solutions to sketch therelated quadratic graph, labelling all intersections with the coordinate axis and turning point.

(a) (i) $x^{2}+2 x-20=0$	(b) (i) $-11+8 x-x^{2}=0$	(c) (i) $3 x^{2}-18 x+2=0$
(ii) Write $y=x^{2}+2 x-20$ in the form $y=a(x+b)^{2}+c$	(ii) Write $y=-11+8 x-x^{2}$ in the form $y=a(x+b)^{2}+c$	(ii) Write $y=3 x^{2}-18 x+2$ in the form $y=a(x+b)^{2}+c$
(iii) Sketch $y=x^{2}+2 x-20$	(iii) Sketch $y=-11+8 x-x^{2}$	(iii) Sketch $y=3 x^{2}-18 x+2$

3. Evaluate the equation of the following quadratics, giving your answer in the form $y=a x^{2}+b x+c$

1.	Solve	$\begin{aligned} & 3 x-4 y=16 \\ & 2 x+12 y=7 \end{aligned}$	2.	Solve	$\begin{aligned} & 3 y=2 x-8 \\ & 4 x+y=-5 \end{aligned}$	3.	Solve $\begin{gathered} 3 x^{2}-x y+y^{2}=36 \\ x-2 y=10 \end{gathered}$

B5 Inequalities

Find the set of values for which...

1. $4(5-2 y) \geq 3(7-2 y)$
2.

$2 x^{2}-5 x-3>0$
3.
$x(2 x+1) \leq x^{2}+6$

E1 Triangle Geometry (Calculator)

1. Calculate the length AB

Practice Test 2
B1 Indices

1. $\left(3 \frac{2}{8}\right)^{-1 / 3}=\left(\frac{27}{8}\right)^{-\frac{1}{3}}$

$$
=\left(\frac{8}{27}\right)^{1 / 3}
$$

$$
=\frac{2}{3} \quad A_{1}
$$

$$
\text { 2. } \begin{aligned}
& \frac{\sqrt{x} \times \sqrt[5]{x}}{x^{2}} \\
= & \frac{x^{1 / 2} \times x^{1 / 5}}{x^{2}} \\
= & \frac{x^{1 / 10}{ }^{A 1}}{x^{2}}=x^{-13 / 10} \mathrm{Al}
\end{aligned}
$$

3. $\quad 3^{3 x \cdot 2}=\sqrt[3]{9}$

$$
\text { 4. } \begin{aligned}
\left(\frac{1}{2}\right)^{1-x} & =\left(\frac{1}{8}\right)^{2 x} \\
\left(2^{-1}\right)^{1 \cdot x} & =\left(2^{-3}\right)^{2 x} \mathrm{Ml} \\
2^{-1+x} & =2^{-6 x} \\
-1+x & =-6 x \mathrm{Ml} \\
7 x & =1 \\
x & =1 / 7 \mathrm{Al}
\end{aligned}
$$

(11)

32 Surds

1. $\sqrt{80}$
2. $(7-3 \sqrt{5})(3 \sqrt{5} \cdot 2)$

$$
\begin{array}{ll}
=\sqrt{16 \times 5} & =21 \sqrt{5}-14-45+6 \sqrt{5} \quad \mathrm{MI} \mathrm{AI} \\
=4 \sqrt{5} \mathrm{Al} & =27 \sqrt{5}-59
\end{array}
$$

3.

$$
\frac{7}{5 \sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} M 1_{1}
$$

$$
=\frac{7 \sqrt{3}}{15} \mathrm{Al} \quad=\frac{21+3 \sqrt{\pi}+35 \sqrt{11}+55}{49-11} \mathrm{Al}
$$

$$
\begin{equation*}
=\frac{76+38 \sqrt{11}}{38} \tag{10}
\end{equation*}
$$

$$
=2+\sqrt{\pi}
$$

B3 Quadratics

1. (a) (i)

$$
\begin{aligned}
& x^{2}-13 x+40=0 \\
& (x-8)(x-5)=0 \quad \mathrm{M}_{1} \\
& x=8 \quad x=5 \quad \mathrm{Al}
\end{aligned}
$$

(ii)

(b) (i)

$$
\begin{aligned}
& x^{2}+5 x=0 \\
& x(x+5)=0 \quad \mathrm{MI} \\
& x=0 \quad x=-5 \quad \mathrm{Al}
\end{aligned}
$$

$$
\text { (ii) } y=x^{2}+5 x
$$

(c) (i)

$$
\begin{aligned}
& 6 x^{2}+5 x-4=0 \\
& (3 x+4)(2 x-1)=0 \mathrm{ml} \\
& x=-4 / 3 \quad x=1 / 2 \text { Al }
\end{aligned}
$$

B1 shape, location related to axes
AI intersections x-axis
A1 intersections y-axis
2. (a) (i)

$$
\begin{gathered}
x^{2}+2 x-20=0 \\
(x+1)^{2}-1-20=0 \quad \mathrm{M} 1 \\
(x+1)^{2}=21 \\
x+1= \pm \sqrt{21} \\
x=-1 \pm \sqrt{21}
\end{gathered}
$$

Graphs
BI Shape
AI Vertex
A1 intersections x-axis
AI intersections y-axis
(b)

$$
\text { (i) } \begin{aligned}
-11+8 x-x^{2} & =0 \\
-\left(x^{2}-8 x+11\right) & =0 \\
-\left[(x-4)^{2}-16+11\right] & =0 \mathrm{ml} \\
5-(x-4)^{2} & =0 \\
(x-4)^{2} & =5 \\
x-4 & = \pm \sqrt{5} \\
x=4 & \pm \sqrt{5} \mathrm{Al}
\end{aligned}
$$

(c)

$$
\text { (i) } \begin{aligned}
3 x^{2}-18 x+2 & =0 \\
3\left[x^{2}-6 x+\frac{2}{3}\right] & =0 \\
3\left[(x-3)^{2}-9+\frac{2}{3}\right] & =0 \\
3\left[(x-3)^{2}-\frac{25}{3}\right] & =0 \\
3(x-3)^{2}-25 & =0 \\
3(x-3)^{2} & =25 \\
x-3 & = \pm \frac{5}{\sqrt{3}} \\
x & =\frac{9 \pm 5 \sqrt{3}}{3}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& y=x^{2}+2 x-20 \\
& y=(x+1)^{2}-21
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& y=-11+8 x-x^{2} \\
& y=5-(x-4)^{2}
\end{aligned}
$$

(iii) y

(ii)

$$
\begin{aligned}
& y=3 x^{2}-18 x+2 \\
& y=3(x-3)^{2}-25
\end{aligned}
$$

Al
(23)
3. (a)

$$
\begin{aligned}
& y=k(x+7)(x-2) \\
& -14=k(7)(-2) \\
& y=(x+7)(x-2) \\
& y=x^{2}+5 x-14
\end{aligned}
$$

(b)

$$
\begin{aligned}
& y=k(x-1)(x-6) \\
& 21=k(-1)(-6) \\
& \Rightarrow k=\frac{21}{6}=\frac{7}{2} \\
& y=\frac{7}{2}(x-1)(x-6) \\
& y=\frac{7}{2}\left(x^{2}-7 x+6\right) \\
& y=\frac{7 x^{2}}{2}-\frac{49 x}{2}+21
\end{aligned}
$$

(c)

$$
\begin{align*}
y & =k(x-3)^{2}-20 \\
-2 & =k(-3)^{2}-20 \\
18 & =k(9) \\
k & =2 \\
y & =2(x-3)^{2}-20 \\
y & =2\left(x^{2}-6 x+9\right)-20 \\
y & =2 x^{2}-12 x-2
\end{align*}
$$

B4. Simultaneous equations

$$
\begin{aligned}
& \text { 1. } 3 x-4 y=16 \\
& 9 x-12 y=48 \\
& \text { MI } \\
& \begin{aligned}
& 2 x+12 y=7 \quad \frac{2 x+12 y}{}=7 \\
& 11 x=55
\end{aligned} \\
& x=5 \text { A। } \\
& 3 x-4 y=16 \\
& 15-4 y=16 \\
& -1=4 y \\
& y=-1 / 4 \\
& x=5, y=-1 / 4 \quad \text { Al }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2. } 3 y=2 x-8 \Rightarrow 2 x=3 y+8 \\
& 4 x+y=-5 \\
& 4 x=6 y+16 \\
& 6 y+16+y=-5 \\
& 7 y=-21 \\
& y=-3 \quad 2 x=3 y+8 \\
& 2 x=3(-3)+8 \\
& x=-1 / 2 \text { A। } x=-1 / 2 y=-3 \text { A। }
\end{aligned}
$$

$$
\begin{gather*}
3.3 x^{2}-x y+y^{2}=36 \\
x-2 y=10 \Rightarrow x=2 y+10 \\
3(2 y+10)^{2}-(2 y+10) y+y^{2}=36 \\
1\left(4 y^{2}+40 y+100\right)-y(2 y+10)+y^{2}=36 \\
12 y^{2}+120 y+300-2 y^{2}-10 y+y^{2}=36 \\
11 y^{2}+110 y+264=0 \\
y^{2}+10 y+24=0 \\
(y+6)(y+4)=0 \\
y=-6 \quad y=-4 \\
x=2(-6)+10 \quad x=2(-4)+10 \tag{11}\\
x=-2 \quad x=2 \\
x-2, y=-6 \quad \text { Al } x=2, y=-4
\end{gather*}
$$

BS Inequalities
1.

$$
\begin{aligned}
& 4(5-2 y) \geqslant 3(7-2 y) \\
& 20-8 y \geqslant 21-6 y \\
&-1 \geqslant 2 y \\
&-1 / 2 \geqslant y \\
& y \leqslant-1 / 2
\end{aligned}
$$

2. $2 x^{2}-5 x-3>0$

$$
(2 x+1)(x-3)>0 \quad M 1
$$

CVs $x=-1 / 2 \quad x=3 \quad$ Al

$$
x<-1 / 2 \text { or } x>3 \quad \text { A । }
$$

3. $x(2 x+1) \leqslant x^{2}+6$

$$
\begin{aligned}
& 2 x^{2}+x \leq x^{2}+6 \mathrm{MI} \\
& x^{2}+x-6 \leq 0 \\
& (x+3)(x-2) \leq 0 \quad M 1
\end{aligned}
$$

CVS $x=-3 \quad x=2$ AI

$$
-3 \leqslant x \leq 2 \quad \mathrm{~A} \mid
$$

El Triangle Geometry

$$
\frac{c}{\sin 74^{\circ}}=\frac{11.6}{\sin 37^{\circ}}
$$

$$
\begin{equation*}
c=\frac{11 \cdot 6 \sin 74^{\circ}}{\sin 37^{\circ}} \tag{MI}
\end{equation*}
$$

$$
c=18.5 \mathrm{~cm}
$$

2.

$$
\begin{align*}
A<_{\theta}^{5.9 m}
\end{aligned} \quad \begin{aligned}
\cos A & =\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
\cos \theta & =\frac{5.9^{2}+4.9^{2}-5.3^{2}}{2(5 \cdot 9)(4.0)} \tag{MI}\\
\cos \theta & =0.53148 \\
\theta & =57.9^{\circ} \quad \text { Al }
\end{align*}
$$

3.

9

$$
\frac{\operatorname{Sin} \theta}{13.2}=\frac{\operatorname{Sin} 29}{7.6}
$$

$$
\begin{equation*}
\sin \theta=\frac{13 \cdot 2 \sin 29^{\circ}}{7.6} \tag{MI}
\end{equation*}
$$

$\sin \theta=0.8420$

$$
\theta=57 \cdot 4^{\circ}
$$

obtuse $\Rightarrow \theta=123^{\circ}$
$A B$

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \cdot 2 a b \cos C \\
& c^{2}=13 \cdot 2^{2}+7 \cdot 6^{2} \cdot 2(13 \cdot 2)(7 \cdot 6) \cos 28 \quad \mathrm{MI} \\
& c^{2}=54 \cdot 8 \Rightarrow c=7 \cdot 4 \mathrm{~cm} \quad \mathrm{Al}
\end{aligned}
$$

4.

$$
\text { Area }=1 / 2 a b \operatorname{Sin} C
$$

$$
\begin{aligned}
& \text { Area }=1 / 2(12.5)(10.6) \operatorname{Sin} 68^{\circ} \mathrm{Ml} \\
& \text { Area }=61.5 \mathrm{~m}^{2} \mathrm{Al}
\end{aligned}
$$

