

1

Computer Science

Year 12 into year 13 summer independent work

Deadline – first lesson in September

Part 1 – Website Development

HTML, CSS, JavaScript Programming Task

As there will be a section of coding on your exam that relates to HTML, CSS and JavaScript an

exercise has been devised that will require you to develop a website that uses all three

languages.

Theme
Produce a website on a topic of your choice. This could be your favourite film, your favourite

brand, a computer game or any other suitable topic. Your website will need to have a minimum

of four HTML pages in it.

Requirements

1. Your website should be constructed from HTML, CSS and JavaScript that you have written

yourself using an editor like VS code, sublime text, notepad++ or something similar. The js

examples in part 2 are in sublime text. https://www.sublimetext.com/download

2. You cannot use a development tool like Dreamweaver which writes the code for you.

3. Your site must have a minimum of four pages in it.

4. You must have all of your pages linked to a single CSS file.

5. At least one page must feature user interaction using HTML forms and JavaScript to process

and output some form of user input. JavaScript will have to process the user input and output

it in some way, this is your decision.

6. Optional: Try to include a variety of media types

You need to make use of each of the features for each language shown on pages 2 and

3 below:

What to hand in – Create an evidence document to showcase the

following.

1. Print screens of your pages as they appear in a browser

2. Code listing of your webpages, css and js

3. Ensure you have commented your code to annotate what is happening with each section

or line

https://www.sublimetext.com/download

2

Language Features to be Used

Page | 3

// Help is easily available via the internet, but I recommend w3schools if you do need help.
https://www.w3schools.com/html/default.asp
https://www.w3schools.com/css/default.asp
https://www.w3schools.com/js/default.asp

https://www.w3schools.com/html/default.asp
https://www.w3schools.com/css/default.asp
https://www.w3schools.com/js/default.asp

Page | 4

Part 2 – JavaScript

As shown on the previous page, the exam board information about JS is quite vague, so we are

going to complete a number of exercises to give you experience of programming a variety of

familiar algorithms using the JavaScript syntax.

Exercise 1 – Visit https://p5js.org/download/ and then click on the button highlighted pink below.

You should get a zip file that you can extract/unzip as shown below:

2 – Put the two files into your chosen folder and then navigate to that location, inside the p5 folder

you should see:

This is the p5 library plus in the addons folder there is additional functionality for sounds – we won’t

need this however.

https://p5js.org/download/

Page | 5

The empty-example folder is the base folder and contains a .html file and a .js file. I would make a

copy and rename it (for example) project1, and then every time you want to make a new

project, you can copy and paste the empty-example folder to start your next mini project.

Using an IDE (I am using sublime text – link in part 1 above) go to file > open and open both of the

index.html and also sketch.js. They should look like this:

Index.html:

You don’t need to do anything with this index file, it already points to the p5 library and the sketch

file where you will add your code.

Page | 6

Sketch.js:

This is the file that we will edit to learn some simple js by creating code to draw and then display in

our browser.

Type the following code, save it, and then test it by opening the index.html in a browser – I am

using FireFox.

Page | 7

This is what you should see in a browser. Paste your code/proof onto your evidence document.

Q – What do the parameters do that we pass to the ellipse function? Show a variety of other

ellipses. Paste your code/proof onto your evidence document.

Exercise 2 – Start a new project by copy and pasting empty-example and then edit the sketch.js

file once more.

Save this file and see what happens. Save the result as a screen print.

Exercise 3 – Combine the code the code for this example and the previous example to make a

multicoloured moving ellipse? Paste your code/proof onto your evidence document.

Page | 8

Exercise 4 – Code the shapes below.

Results in:

Page | 9

Pay special attention to the arc function, the function draws part of an ellipse, the parameters

work similar to other shapes, but have start and stop points measured in radians.

Parameter 1 – x location

Parameter 2 – y location

Parameter 3 – width

Parameter 4 – height

Parameter 5 – start (in radians)

Parameter 6 – stop (in radians)

QUARTER_PI = 45 degrees

HALF_PI = 90 degrees

PI = 180 degrees

PI + HALF_PI = 270 degrees

TWO_PI = 360 degrees

Results in:

Exercise 5 – Create a house scene using shapes, and make it multicoloured rather than monotone

as in the example above. Paste your code/proof onto your evidence document.

Exercise 6 – Combine the code we have done so far to make a moving PacMan style shape that

appears animated and closes its mouth on each movement. Paste your code/proof onto your

evidence document.

Page | 10

Exercise 7 – Bubble sort

https://p5js.org/examples/simulate-bubble-sort.html

Get the code working in your browser, and read through the annotations to see how it works, and

change the background/line colours (colors). Paste your code/proof onto your evidence

document.

https://p5js.org/examples/simulate-bubble-sort.html

Page | 11

The code below is code for an insertion sort, and is written in python.

Exercise 8 – Use the code from the two examples to create a visualisation of the insertion sort in

p5.js. Paste your code/proof onto your evidence document.

Exercise 9 – Quick sort – use the link or code from scratch using the code below:

https://p5js.org/examples/simulate-quicksort.html

// width of each bar is taken as 8.

let values = [];

// The array 'states' helps in identifying the pivot index

// at every step, and also the subarray which is being sorted

// at any given time.

let states = [];

// The setup() function is called once when the program

// starts. Here, we fill the array 'values' with random values

// and the array 'states' with a value of -1 for each position.

function setup() {

 createCanvas(710, 400);

 for(let i = 0; i < width/8; i++) {

 values.push(random(height));

 states.push(-1);

 }

https://p5js.org/examples/simulate-quicksort.html

Page | 12

 quickSort(0, values.length - 1);

}

// The statements in draw() function are executed continuously

// until the program is stopped. Each statement is executed

// sequentially and after the last line is read, the first

// line is executed again.

function draw() {

 background(140);

 for(let i = 0; i < values.length; i++) {

 // color coding

 if (states[i] == 0) {

 // color for the bar at the pivot index

 fill('#E0777D');

 } else if (states[i] == 1) {

 // color for the bars being sorted currently

 fill('#D6FFB7');

 } else {

 fill(255);

 }

 rect(i * 8, height - values[i], 8, values[i]);

 }

}

async function quickSort(start, end) {

 if (start > end) { // Nothing to sort!

 return;

 }

 // partition() returns the index of the pivot element.

 // Once partition() is executed, all elements to the

 // left of the pivot element are smaller than it and

 // all elements to its right are larger than it.

 let index = await partition(start, end);

Page | 13

 // restore original state

 states[index] = -1;

 await Promise.all(

 [quickSort(start, index - 1),

 quickSort(index + 1, end)

]);

}

// We have chosen the element at the last index as

// the pivot element, but we could've made different

// choices, e.g. take the first element as pivot.

async function partition(start, end) {

 for (let i = start; i < end; i++) {

 // identify the elements being considered currently

 states[i] = 1;

 }

 // Quicksort algorithm

 let pivotIndex = start;

 // make pivot index distinct

 states[pivotIndex] = 0;

 let pivotElement = values[end];

 for (let i = start; i < end; i++) {

 if (values[i] < pivotElement) {

 await swap(i, pivotIndex);

 states[pivotIndex] = -1;

 pivotIndex++;

 states[pivotIndex] = 0;

 }

 }

 await swap(end, pivotIndex);

 for (let i = start; i < end; i++) {

 // restore original state

 if (i != pivotIndex) {

Page | 14

 states[i] = -1;

 }

 }

 return pivotIndex;

}

// swaps elements of 'values' at indices 'i' and 'j'

async function swap(i, j) {

 // adjust the pace of the simulation by changing the

 // value

 await sleep(25);

 let temp = values[i];

 values[i] = values[j];

 values[j] = temp;

}

// custom helper function to deliberately slow down

// the sorting process and make visualization easy

function sleep(ms) {

 return new Promise(resolve => setTimeout(resolve, ms));

}

This is one implementation of the quick sort, get it working in another p5.js project, and change

the background/line colours (colors). Paste your code/proof onto your evidence document.

Page | 15

Exercise 10 – Merge sort

The code below is an implementation of a merge sort written in Python.

Use the code from the two examples to create a visualisation of the merge sort in p5.js. Paste your

code/proof onto your evidence document.

Page | 16

Part 3 – Practical Project – Development

At this stage, the analysis and the problem decomposition and GUI/Usability sections of the design

of your project should be complete and although it may be necessary to revisit these two sections

as you come across unexpected issues etc, it is now time to complete the design and then move

onto the development of your system.

Outline to stages to complete
1 – The analysis should be completed – the formal deadline was 26th June 2025.

2 – The design

• Over summer you should complete:

o D1 – Decomposition

o D2 – User interface and usability

Complete at least one, preferably two tutorials that are of similar projects
3 – To help you with writing your design algorithms, thinking about what you will need to test, and

also help with your implementation, you will need to:

Find one or two example projects that are of a similar type to yours, for examples if you are doing

phone app, complete something similar, if you are making a game, find a similar resource. This will

help with the design and development sections of the NEA. Add these to your NEA doc to share

with me.

